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Abstract.  

Accurate long-term marine-derived biogenic sulfur aerosol concentrations at high spatial and temporal resolutions are critical 

for a wide range of studies including climatology, trend analysis, model evaluation, accurate investigation of their 

contribution to aerosol burden, or to elucidate their radiative impacts and to provide boundary conditions for regional 

models. By applying machine learning algorithms, we constructed the first, publicly available, daily gridded dataset of in-20 

situ produced biogenic methanesulfonic acid (MSA) and sulfate (SO4) concentrations covering the North Atlantic Ocean. 

The dataset is of high spatial resolution of 0.25° × 0.25°, spanning 25 years (1998–2022), far exceeding what observations 

alone could achieve both space- and time-wise. The machine learning models were generated by combining in-situ 

observations of sulfur aerosol data at Mace Head research station, west coast of Ireland, and from NAAMES cruises in the 

NW Atlantic, combined with the constructed sea-to-air dimethylsulfide flux (FDMS) and ECMWF-ERA5 reanalysis datasets. 25 

To determine the optimal method for regression, we employed four machine learning model types: support vector machines, 

ensemble, Gaussian process, and artificial neural networks. A comparison of the mean absolute error (MAE), root mean 

square error (RMSE), and coefficient of determination (R2) revealed that the Gaussian process regression (GPR) was the 

most effective algorithm, outperforming the other models in simulating the biogenic MSA and SO4 concentrations. For 

predicting daily MSA (SO4), GPR displayed the highest R2 value of 0.86 (0.72) and the lowest MAE of 0.014 (0.10) µg m–3. 30 

The GPR partial dependence analysis suggests that the relationships between predictors and MSA and SO4 concentrations 

are complex rather than linear. Using the GPR algorithm, we produced a high-resolution daily dataset of In-situ Produced 

Biogenic MSA and SO4 sea-level concentrations over the North Atlantic, which we named IPB-MSA&SO4. The obtained 
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IPB-MSA&SO4 data allowed us to analyze the spatiotemporal patterns of MSA, SO4, and the ratio between them 

(MSA:SO4). A comparison with the existing CAMS-EAC4 reanalysis suggests that our high-resolution dataset reproduces 35 

with high accuracy the spatial and temporal patterns of the biogenic sulfur aerosol concentration and has high consistency 

with independent measurements in the Atlantic Ocean. The IPB-MSA&SO4 is publicly available at 

https://doi.org/10.17632/j8bzd5dvpx.1 (Mansour et al., 2023b). 

1 Introduction 

Marine-derived biogenic sulfur aerosol particles exert an important influence on the radiative properties of the atmosphere, 40 

both directly by scattering solar radiation and indirectly by modifying cloud properties (Langmann et al., 2008; Charlson et 

al., 1987). Dimethylsulfide (DMS), a volatile organic compound produced by marine phytoplankton, is the main precursor of 

biogenic sulfur-containing aerosols in the marine boundary layer (MBL). After being ventilated into the atmosphere, DMS is 

oxidized to form two of the major marine aerosol species, Methanesulfonic acid (MSA) and non-sea-salt sulfate (nss-SO4
2–). 

Throughout the present study, we abbreviate the nss-SO4
2– concentration as SO4 and MSA concentration as MSA, for 45 

simplicity. Sulfur emitted by marine organisms constitutes 20% (Fiddes et al., 2018) to 40% (Simo, 2001) of the total sulfur 

burden of the atmosphere. The understanding of the role of MSA and SO4 concentrations in Earth’s climate is elusive 

(Mansour et al., 2020a; Hodshire et al., 2019). According to the CLAW hypothesis (Charlson et al., 1987), negative climate 

feedback is expected to occur if phytoplankton responds to elevated temperature and solar radiation levels by increasing their 

DMS production, thereby, exerting a cooling effect by increasing planetary albedo. Indeed, studies confirmed that DMS 50 

emissions contribute significantly to stabilizing the Earth's atmosphere (Sanchez et al., 2018; Thomas et al., 2010; Kim et al., 

2018; Mahmood et al., 2019; Mansour et al., 2022; Mansour et al., 2020b), while a few others have claimed that the 

biological control over cloud condensation nuclei (CCN) goes even beyond the CLAW's climatic feedback role of DMS 

(Quinn and Bates, 2011; Woodhouse et al., 2010; O'Dowd et al., 2004). As a result, biogenic sulfur aerosols play a central 

role in ocean-atmosphere interactions and regional climate change, and it is critical to parameterize and characterize biogenic 55 

MSA and SO4 across different sea areas to constrain the past, current and future climate impacts of both species (Hodshire et 

al., 2019; Gondwe et al., 2003). 

The global aerosol-chemistry-climate general circulation models are used widely to assess the radiative forcing of DMS-

derived aerosols. A negative forcing caused by the DMS effect is predicted ranging between −1.7 and −2.3 W m−2 (Fiddes et 

al., 2018; Fung et al., 2022; Thomas et al., 2010; Mahajan et al., 2015). This range is comparable to the positive forcing 60 

impact of anthropogenic CO2 emissions (1.83±0.2 W m−2) (Etminan et al., 2016). Large uncertainties in DMS forcing 

estimates (up to ±10 W m−2) are partly because models overlook the high-frequency spatial, temporal, and seasonal 

variability in DMS fluxes (Mansour et al., 2023a; Royer et al., 2015; Mcnabb and Tortell, 2022), and consequent oxidation 

products (Riccobono et al., 2014), which are not adequately constrained by the available sparse observations (Bock et al., 
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2021). This level of uncertainty underlines the need for improved parameterizations of natural sulfur aerosol cycling and 65 

fluxes at regional scales (Hulswar et al., 2022; Gali et al., 2018; Mahajan et al., 2015), which is essential for determining 

their impact on climate. 

Focusing on the North Atlantic (NA) Ocean, sulfur-containing aerosols, MSA and SO4, have been measured at Mace Head 

sampling station, a coastal area in the eastern NA Ocean, to quantify the contribution of phytoplankton emissions to aerosol 

mass concentrations in MBL (Rinaldi et al., 2010; Rinaldi et al., 2009; O'Dowd et al., 2004), to assess the long-term seasonal 70 

patterns in the chemical composition of submicron aerosol in the different origin of marine air masses (Ovadnevaite et al., 

2014), and to identify the oceanic regions acting as the main source of biogenic aerosols (Mansour et al., 2020b). During 

NAAMES field campaigns, research cruises aimed at comprehending the relationships between ecosystems, aerosols, and 

clouds (Behrenfeld et al., 2019), Saliba et al. (2020) evaluated the origins and contributions of submicron organic and sulfate 

components to CCN concentrations in the MBL. They concluded that the DMS-derived secondary SO4 enhanced 75 

hygroscopicity, particle size, and CCN concentrations by 5–66%, especially in the spring, highlighting the importance of 

phytoplankton produced DMS emissions for the CCN budget in the NA (Mansour et al., 2022; Mansour et al., 2020b; 

Sanchez et al., 2018). However, it is currently challenging to effectively investigate climatology, long-term trends and 

climate forcing of biogenic sulfur compounds, as well as validate inherent model outputs, since there is a lack of high-time 

resolution data on these compounds. 80 

In this study, we present the first high-resolution and long-term daily gridded time series of freshly formed In-situ Produced 

Biogenic Methanesulfonic Acid and Sulfate (IPB-MSA&SO4) concentrations over the NA ocean at 0.25° × 0.25° spatial 

resolution. The data covers 25 years from 1998 to 2022 with the possibility of future updating year by year. We created the 

IPB-MSA&SO4 dataset using in-situ MSA and SO4 data measured at Mace Head (MHD) site and from NAAMES cruises, 

the gridded dataset from the ECMWF-ERA5 together with the constructed FDMS (Mansour et al., 2023a) as input data. To 85 

achieve this aim, we employed machine learning (ML) approaches: support vector machines (SVM), regression ensemble 

(RE), Gaussian process regression (GPR), and artificial neural networks (ANN). ML has been applied in a variety of 

scientific areas for model approximation, experiment design, and multivariate regression of oceanic and atmospheric 

complex systems, however, no prior applications to MSA and SO4 prediction have been published, to our knowledge. During 

model training, we evaluated the various possible kernel functions and hyperparameters in each ML type (details in Table 90 

S1), employing the 5-fold cross-validation strategy to select the best-performing (optimal) function capable of properly 

predicting MSA and SO4. The partial dependence analysis is also used to assess the effect of different predictors on the 

modeled MSA and SO4. Furthermore, we investigate the monthly spatial distributions of MSA, SO4 and the ratio between 

them (MSA:SO4) to examine the monthly evolution of MSA and SO4 in the different regions of the NA domain from 1998 to 

2022. The output data (IPB-MSA&SO4) from this study should be useful for filling the data gap, particularly for the NA, and 95 
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be applicable to a variety of investigations, such as climatology, trend analysis, model evaluation, radiative impacts, and 

providing boundary conditions for regional models. 

2 Study domain and data sources 

2.1 Study area and measuring sites 

The study area extends from 20° to 66° N and from 72° W to the prime meridian (Fig. 1) covering the NA Ocean. The key 100 

climate-relevant features in the study domain are the Atlantic meridional overturning circulation (AMOC) (Buckley and 

Marshall, 2016) and the cyclonic subpolar gyre (SPG) (Rhein et al., 2011). AMOC is a major current system of the NA 

transporting the warm and salty surface waters toward the North and the cold deep waters toward the South. The NA SPG 

extends from 45° N to around 65° N and comprises the sills between Greenland, Iceland, the Faroe Islands, and Scotland. 

The SPG is a crucial region for the modulation of the temperate climate of north-western Europe (Marzocchi et al., 2015), 105 

and its dynamics determine the rate of deep and intermediate water formation (sinking dense and cold surface waters through 

air-sea heat exchanges in wintertime) particularly in the Labrador Sea (Katsman et al., 2004). Both phenomena contribute to 

the regional changes in biological activity and subsequent emissions in the study domain. 

The MHD global atmospheric watch (GAW) research station (53.33° N, 09.90° W) is located on Ireland's west coast (Fig. 

1), at about 80 meters from the coastline and 21 m above mean sea level. MHD is the only GAW station in the eastern 110 

Atlantic region and is the globally acknowledged clean background western European station, providing key baseline input 

for intercomparing with levels elsewhere in Europe (Grigas et al., 2017; O'Dowd et al., 2014). 

Four shipboard field campaigns were carried out as part of the NAAMES research project (Behrenfeld et al., 2019). The 

tracks of cruises representing marine conditions during aerosol sampling (Saliba et al., 2020) are shown in Fig. 1. The 

measurements cover the periods of November 2015, May–June 2016, September 2017, and March 2018. Behrenfeld et al. 115 

(2019) provide a thorough explanation of the NAAMES project's goals, objectives, and atmospheric and oceanic conditions. 
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Figure 1: The study region of the North Atlantic Ocean (72° – 0° W, 20° – 66° N) with bathymetry presented in meters. The 

gridded bathymetric dataset was extracted from the General Bathymetric Chart of the Oceans (https://www.gebco.net), the 120 
GEBCO_2023 Grid. The blue-filled square represents the Mace Head measuring station on the west coast of Ireland and the red 

points are the sampling points that represent marine conditions in the NAAMES cruises track. The violet points represent the ship 

track during Polarstern campaigns. 

 

2.2 Observational data 125 

The long-term submicron sulfur aerosol species atmospheric concentrations (Methanesulfonic acid [MSA] and Sulfate 

[SO4]) from January 2009 to June 2018 measured at MHD were used. The measurements were performed by using the 

Aerodyne High Resolution- Time of Flight- Aerosol Mass Spectrometer (HR-ToF-AMS). The HR-ToF-AMS (Decarlo et al., 

2006) output has a time resolution of ~5-10 minutes and it was operated according to the recommendations by Jimenez et al. 

(2003), Allan et al. (2003) and Canagaratna et al. (2007). The MSA was derived from the concentration of mass fragment 130 

CH3SO2
+ (Ovadnevaite et al., 2014). Further information on the MSA measurement can be found in Mansour et al. (2020a). 

The black carbon (BC) concentrations were measured in-situ at MHD by a multi-angle absorption photometer (O'Dowd et 

al., 2014) to identify the anthropogenically impacted air masses, as detailed in Section 3.1.1. 
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High‐resolution in-situ shipborne measurements of non‐refractory submicron SO4 concentrations were measured every 5 min 

using HR-ToF-AMS during four open‐ocean research cruises (NAAMES) in the NW Atlantic [4 campaigns represent winter 135 

(November 2015), late spring (May–June 2016), autumn (September 2017), and early spring (March 2018)] (Saliba et al., 

2020). We employ the SO4 concentrations, whereas there are no high-resolution MSA datasets available from NAAMES 

campaigns, during periods that were largely marine aerosol sources which were defined as periods when particle number 

concentrations <1500 cm−3, BC <50 ng m−3, 2-days back trajectories originated from the North or tropical Atlantic, and 

radon concentrations <500 mBq m−3 according to Saliba et al. (2020). The measured SO4 from AMS excludes refractory 140 

particles that likely contain the majority of sea‐salt sulfate which is therefore approximately equivalent to nss-sulfate 

(Frossard et al., 2014). 

2.3 Air mass back-trajectories 

The Air Resources Laboratory (ARL) of the National Oceanic and Atmospheric Administration (NOAA) developed the 

Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT4) model (Rolph et al., 2017; Stein et al., 2015), which is 145 

used to calculate the air mass back-trajectories (BTs). The archived Global Data Assimilation System (GDAS1) (1° × 1°) of 

the National Centers for Environmental Prediction (NCEP) was used as a driver of the trajectory calculation 

(ftp://arlftp.arlhq.noaa.gov/pub/archives/gdas1). We run the model at the MHD sampling station as a fixed source location 

and throughout the NAAMES cruises as a moving source location. The starting height is set to be 100 m above ground level 

and the backward time is 3 days with an interval of 1 h along each entire trajectory track. The schematic diagram of BTs 150 

calculation is shown in Fig. S1. The arrival frequency of BTs at MHD is 3h (eight tracks a day) covering the period from 01-

Jan-2009 to 30-Jun-2018 and of NAAMES is hourly (twenty-four tracks a day) covering the time of the four campaigns 

identified as marine periods (Saliba et al., 2020). 

2.4 Dimethylsulfide flux data 

The seawater DMS is the primary contributor to biogenic sulfur aerosol in the atmosphere. For this reason, we use the sea-to-155 

air DMS flux (FDMS) as a predictor of MSA and SO4 concentrations. Mansour et al. (2023a) used an ML predictive algorithm 

based on Gaussian process regression (GPR) to simulate the distribution of daily seawater DMS concentrations and related 

FDMS in the NA areas from 35° to 66° N and from 0° to 55° W at 0.25° × 0.25° spatial resolution. We extended the GPR 

model within the NA to encompass the NAAMES measurements, which are essential because they cover the western most 

section of the study area. Fig. S2 displays the main differences between the two domains. Simply, the GPR was trained once 160 

more, utilizing the same approach of Mansour et al. (2023a), with a higher number of data points and yielded an enhanced R2 

value up to 0.77 on the independent test dataset. The daily sea-to-air FDMS was calculated using the gas transfer velocity 

(Goddijn-Murphy et al., 2012) and the DMS derived from GPR predictions. For more details about the data product, we refer 

the reader to Mansour et al. (2023a).  
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2.5 Meteorological data 165 

The ECMWF-ERA5 reanalysis data (Hersbach et al., 2020) were downloaded to extract the meteorological parameters used 

as predictors of MSA and SO4 in the ML models. ERA5 provides estimates for the hourly state of the atmosphere, 

worldwide, with spatial resolution 0.25° × 0.25° at the surface and different pressure levels. From the global domain, we 

extracted multiple atmospheric components including air temperature at 2m above sea level (AT) and surface net short-wave 

radiation flux (SRF) as representative of thermal heating, and the relative humidity (RH) as representative of water vapor 170 

abundance in the atmosphere. To represent the dispersion of aerosol particles in the troposphere and the wet removal through 

the below-cloud scavenging process, the boundary layer height (BLH) and the precipitation rate (PR) were utilized, 

respectively. 

3 Methods 

3.1 Data preparation 175 

In this Section, we describe the preparation of predictors and responses that were used to train, cross-validate, and generate 

ML models. 

3.1.1 Air mass selection 

In previous studies (Mansour et al., 2020b; O'Dowd et al., 2015; Ovadnevaite et al., 2014), BC concentration was often 

considered as a useful tool to select clean marine air masses excluding inputs from continental emissions or ship trails. In 180 

this study, we still relied on BC measurements as a precious tool to identify and exclude anthropogenically impacted air 

masses, but we also developed a more complete approach aimed at identifying air masses characterized by a high degree of 

contact with the ocean surface. This was necessary in order to select, from the in-situ observations, data points representing 

almost entirely oceanic sources to provide the best dataset for training the ML models. 

The retention ratio of the air mass over the ocean (𝑅𝑂) was calculated to determine whether an air mass (identified by BT 185 

track) arriving at the MHD sampling station or at the ship location in the case of shipborne measurements was primarily 

from the NA region or not. We used 3‐day BTs arriving 100 m above the MHD sampling station and NAAMES tracks. The 

BTs tracks at the MHD arrival point were calculated 8 times per day, whereas it was 24 times per day at NAAMES 

measuring points, considering only the measurements classified as marine periods (Saliba et al., 2020). The 𝑅𝑂 has been 

calculated for each track as: 190 

 𝑅𝑂 =
∑ 𝑒

−𝑡𝑖
72

𝑁𝑂𝑐𝑒𝑎𝑛
𝑖=1

∑ 𝑒
−𝑡𝑖
72

𝑁𝑇𝑜𝑡𝑎𝑙
𝑖=1

 (1) 

https://doi.org/10.5194/essd-2023-352
Preprint. Discussion started: 6 December 2023
c© Author(s) 2023. CC BY 4.0 License.



8 

 

where 𝑁𝑇𝑜𝑡𝑎𝑙 is the total number of trajectory endpoints which is equal to 73 (arrival point + 72 backward hours). 𝑁𝑂𝑐𝑒𝑎𝑛  is 

the total number of trajectory endpoints passing over the ocean, while 𝑡𝑖 is the backward tracking time with the unit of an 

hour spanning the values from 0 to 72. Because air mass diffusion and particles deposition potentially occur during the air 

mass transport, a weighting factor 𝑒−𝑡𝑖 72⁄  related to tracking time has been introduced. The weighting factor takes the values 195 

from 1 (at the arrival point) up to 0.37 (farthest point), hence, the oceanic areas far from the arrival point, corresponding to 

longer backward tracking time, have a weaker influence than areas closer to the sampling point. As a result, a higher 𝑅𝑂 

value implies that oceanic emissions have a greater influence on the air mass and that the source region is more likely to be 

the ocean. Other studies have used similar methods to characterize air mass source regions. For example, Zhou et al. (2021) 

studied the contribution of non-marine MSA sources in the coastal East China Sea and the Gulf of Aqaba by characterizing 200 

the land air masses. Rinaldi et al. (2021) used a combination of low-travelling air mass BTs and satellite ground-type maps 

to investigate the effect of ground conditions (sea ice, snow, seawater, and land) on air samples at Ny-Ålesund station in the 

Arctic Ocean. 

Because oceanic air masses crossing the NA can pass above the BLH, its connection to local sea surface processes such as 

marine biogenic emission and subsequent atmospheric reactions may be significantly weaker. To address this issue, Eq. 2 205 

was used to calculate the retention ratio of an ocean air mass within the marine boundary layer (𝑅𝐵). 

 𝑅𝐵 =
∑ 𝑒

−𝑡𝑖
72

𝑁𝐵𝑒𝑙𝑜𝑤
𝑖=1

∑ 𝑒
−𝑡𝑖
72

𝑁𝑂𝑐𝑒𝑎𝑛
𝑖=1

 (2) 

where 𝑁𝑂𝑐𝑒𝑎𝑛 is the total number of trajectory endpoints located over the ocean (i.e., marine endpoints) and 𝑁𝐵𝑒𝑙𝑜𝑤  is the 

number of marine endpoints which have an altitude below BLH. The higher the 𝑅𝐵 value, the more airflow over the ocean is 

confined to the MBL. The BLH datasets at each endpoint were extracted from the hourly ERA5 dataset. 210 

The total number of BTs tracks arriving at MHD during the period from Jan-2009 to Jun-2018 is 27,744 (3468 days × 8 

tracks per day). We counted the number of endpoints of all BTs in each 1° × 1° grid cell and normalized them to the 

maximum value to find the percentage of endpoints for all grid cells (Fig. S3). The larger density of BTs endpoints is 

concentrated over the NA oceanic region, indicating that the main source regions for air masses transported to MHD 

sampling stations are most likely oceanic. At MHD, we investigated how MSA (a marine biogenic tracer) responds to 215 

change in BC (a tracer of anthropogenic input) as seen in Fig. S4, by considering hourly data simultaneous to the arrival time 

of BTs (i.e., 8 times a day). We found that MSA tends to fluctuate minimally when BC is less than 15 ng m–3 (slope = 0.05), 

whereas MSA tends to rise slightly when BC exceeds 15 ng m–3 (slope = 0.28). Such cases with hourly BC concentrations 

<15 ng m−3 were classified as representative of marine conditions, that are likely not influenced by anthropogenic sources. 

To constrain the impact of marine biogenic emissions and meteorological parameters on MSA and SO4, air masses were 220 

included in this analysis only if they were characterized by 𝑅𝑂 + 𝑅𝐵 ≥ 1.75, meaning that the air mass had a high degree 
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of contact with the ocean surface within the last 3 days (Fig. S4). Indeed, considering the above condition, an air mass 

must have at least 𝑅𝑂 equal to 0.75 and in such case the track must be traveling 100% of the time below the BLH. By 

introducing the criterion of 𝑅𝑂 + 𝑅𝐵  ≥ 1.75, approximately 72% of the BTs tracks were considered. This reflects the 

significance of the MHD research station for studying NA biogenic emissions, and the frequency with which it is impacted 225 

by MBL air masses (Grigas et al., 2017; O'Dowd et al., 2014). After considering the BC threshold (<15 ng m−3) and 

conservatively removing all the observations done when the BC data were unavailable (instrument downtime), 9211 (33% of 

the total) tracks were classified as representative of marine conditions (selected marine BTs frequency is presented in Fig. 

S5).  

Regarding the NAAMES measurements, the total number of calculated BTs tracks was 832 (Fig. S6) during background 230 

marine conditions, identified by Saliba et al. (2020). In this study, we kept 660 tracks (Fig. S7) of the above 832 as 

representative samples of marine conditions during NAAMEAS cruises by limiting the analysis to hourly samples with 

𝑅𝑂 + 𝑅𝐵  ≥ 1.75. 

3.1.2 Predictors extraction along back trajectories 

In order to train the ML models, it was necessary to associate each observed MSA and SO4 data point with the corresponding 235 

potential predictors. The potential predictors (FDMS, AT, SRF, RH, BLH and PR) were extracted at each endpoint of the BTs 

associated with each of the selected clean marine observational data points (see Section 3.1.1), inside the oceanic region 

within 20−66 °N and 0−72 °W (Fig. S1). The extracted predictor values were then averaged along each marine BT track, 

providing the most representative picture of the conditions (air mass history) that led to the formation of the observed sulfur 

aerosol concentrations. The few endpoints over land or crossing above the BLH were eliminated.  240 

The Pearson's correlation coefficients between the potential predictors and observational MSA and SO4 data were compared, 

considering different BT lengths of 1, 2 and 3 days, to assess which BT length was more representative of the time scale of 

sulfur aerosol formation processes. As seen from Table 1, both MSA and SO4 correlate better with FDMS considering a 3-day 

BT length. Similarly, the majority of the other predictors, except for AT, tended to maximize their correlations considering 2 

or 3 days of BT length. Ultimately, we considered for each predictor the BT length that maximized the correlation 245 

coefficient for the analyses in the present study. 

 

 

 

 250 
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Table 1: The Pearson's Coefficients between possible predictors at the selected marine air masses and the in-situ observed MSA 

and SO4 Concentrations. The MSA, SO4 and FDMS values are used in the log scale. All values are statistically significant at p<0.05. 

Bolds evidence the maximum during different days of air mass history. 

Predictors 
BT length 

(days) 

MSA SO4 

MHD MHD NAAMES 

FDMS 

0 

1 

2 

3 

0.27 

0.64 

0.66 

0.69 

0.24 

0.53 

0.54 

0.55 

0.04* 

0.24 

0.38 

0.47 

AT 

0 

1 

2 

3 

0.65 

0.57 

0.53 

0.53 

0.61 

0.56 

0.53 

0.51 

0.17 

0.29 

0.35 

0.37 

RH 

0 

1 

2 

3 

0.15 

0.33 

0.39 

0.44 

0.15 

0.27 

0.31 

0.33 

0.27 

0.22 

0.24 

0.28 

PR 

0 

1 

2 

3 

-0.18 

-0.27 

-0.33 

-0.35 

-0.12 

-0.26 

-0.31 

-0.33 

-0.09 

-0.27 

-0.34 

-0.32 

BLH 

0 

1 

2 

3 

-0.41 

-0.53 

-0.58 

-0.60 

-0.32 

-0.45 

-0.49 

-0.49 

-0.32 

-0.34 

-0.36 

-0.35 

SRF 

0 

1 

2 

3 

0.32 

0.73 

0.77 

0.78 

0.23 

0.61 

0.65 

0.67 

0.14 

0.53 

0.62 

0.63 

 

3.1.3 Responses at measuring sites 255 

Hourly SO4 at MHD and from NAAMES campaigns as well as MSA at MHD, measured concurrently with the selected 

marine BTs (Section 3.3.1), were used to build ML models. A total of 6162 (6920) data points for MSA (SO4) were 

obtained. Further, we also applied 0.1 and 99.9 percentiles lower and upper thresholds filter to remove the extremely low and 

high values that could bias the ML models training and cross/validation. This helped to identify and remove outliers in each 

dataset, thereby reducing the number of data points to 6150 (6905) for MSA (SO4) (∼0.2 % of data points were rejected). 260 
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Details of the MSA and SO4 percentile thresholds, along with the amount of data before and after applying the filters are 

given in Table 2. The hourly data after cleanup is used for training/ cross-validation and testing of ML models. 

 

Table 2: Details of the number of hourly (MSA and SO4) data points corresponding to selected marine BTs. The threshold used for 

filtering outlier values, and the number of data points after filtering are given. 265 

Response 
No. of hourly data 

points 

Lower threshold 

according to 0.1 

percentile 

Upper threshold 

according to 99.9 

percentile 

No. of data 

lost due to 

filtering 

No. of hourly 

data points 

after cleanup 

MSA 
Source: MHD 

n = 6162 

0.0001 

µg m
–3

 

0.45 

µg m
–3

 
12 6150 

SO4 

Source: MHD 

n = 6260 

0.006 

µg m
–3

 

2.116 

µg m
–3

 
12 

6905 
Source: NAAMES 

n = 660 

0.007 

µg m
–3

 

1.107 

µg m
–3

 
3 

 

3.2 Machine learning models 

The methodological flowchart of the present study is shown in Fig. 2. The core of the framework is using the supervised ML 

regression techniques to build predictive models for estimating the atmospheric concentrations of biogenic MSA and SO4 

(responses) from independent variables (predictors). Predictors include the sea-to-air FDMS and meteorological parameters 270 

that control the aerosol concentration in the MBL. Given that ML models may be generated even if there is no physical 

relationship between predictors and responses, we used multilinear regression to assess the contribution of each predictor to 

MSA and SO4 variations. Initially, we ran the multilinear regression model using the total of the potential six predictors: 

FDMS, AT, SRF, RH, BLH and PR. Secondly, we applied the multilinear regression models by eliminating one predictor each 

time. Each independent variable's contribution to R2 is the reduction in total R2 when that variable is eliminated. The results 275 

(Table 3) showed that the six predictors used can explain up to 74% (53%) of MSA (SO4) variance. Such predictors tend to 

contribute differently to MSA and SO4. SRF, FDMS and BLH are the most effective parameters for MSA (explaining up to 64 

% of the variability), while SRF, AT and FDMS are the most influential on SO4 (explaining up to 44 % of the variability). RH 

has a minor contribution to the MSA and SO4 variance. To know if a predictor contributes significantly to the explained 

variance, we performed the analysis of variance (ANOVA) on the implemented multilinear regression model. The ANOVA 280 

revealed that all the tested predictors have statistically significant (p < 0.05) contributions to MSA and SO4. For these 

reasons, we applied the ML models using all of the potential six predictors.  
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Figure 2: The methodology's workflow. Predictors and response variables data preparation, the overall framework of generation 285 
and development of the trained models, including a schematic diagram of 5-fold cross-validation, models export and validation 

details, as well as post-processing analysis. 

 

Table 3: Multilinear regression of MSA and SO4 as a function of predictors. Each independent variable's contribution to R2 is the 

decrease in total R2 when that variable is eliminated. Individual R2 contributions are normalized and added together to equal the 290 
overall R2. According to the analysis of variance (ANOVA) on the multilinear regression models, all predictors contribute 

statistically significantly (p<0.05) to the MSA and SO4 variance. 

 Total explained 

variance by R2 

Normalized Contribution to R2 (%) 

AT RH PR BLH SRF FDMS 

MSA 74.36% 6.86 0.47 2.82 8.66 42.77 12.97 

SO4 53.39% 11.64 0.55 5.07 3.63 25.83 6.66 
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The datasets, containing the corresponding predictors and each one of the responses (MSA and SO4) separately, were split 

randomly into two subsets, defined as the training/cross‐validation set and the test/evaluation set for each response. The 

training/cross‐validation sets include 80% of the total points (n = 4920 for MSA and n = 5524 for SO4), while the 295 

test/evaluation sets comprise the remaining 20% (n = 1230 for MSA and n = 1381 for SO4). To improve ML algorithms' 

accuracy and protect against overfitting, a k-fold cross‐validation strategy, with k = 5 was used, as this has been shown to 

provide maximal model prediction robustness and minimal bias (Rodriguez et al., 2010; Fushiki, 2011). The k-fold cross-

validation is a procedure used to estimate the skill of the model on new data and generally results in a less biased estimate of 

the model skill. The number k-fold refers to how many groups a given data sample is to be split into. In this study where k = 300 

5, the training/cross‐validation dataset randomly was further divided into 5 folds of roughly equal size. At each trial, one 

group is designated as a holdout or validation dataset, while the remaining four groups are designated as training data (Fig. 

2). The model is then fit on the training set (4 folds) and evaluated on the validation set (last fold), and the average 

evaluation measures (accuracy) on the validation subsets of the five iterations are reported. To better examine the model's 

repeatability on a new independent dataset, the generated models were evaluated on the test data that was not included in the 305 

model construction. 

Four types of ML models were trained/cross-validated and evaluated to identify the best-performing model in estimating 

sulfur aerosol concentrations (MSA and SO4). The ML algorithms are SVM, RE, GPR, and ANN. These are the most 

common types of algorithms, but still, there are subtypes where advanced options and optimizations in the model can 

increase the performance and resilience of the algorithms. In general, each supervised ML model performs differently and 310 

has various strengths and shortcomings. Finding the proper ML algorithm is largely based on trial and error; even 

experienced data scientists cannot anticipate if an algorithm will work without testing it. Thus, understanding the 

fundamentals of various ML algorithms and their applicability in diverse applications is critical (Sarker et al., 2019). As a 

result, initially, we assessed 17 algorithms belonging to the aforementioned four types and chose the most fitted from each 

type (Tables S1 and S2), as detailed in the following Sections.  315 

3.2.1 Support vector machines (SVM) 

SVM is a powerful mathematical model based on the statistical learning theory (Vapnik, 2013) that can be used either for 

classification or regression analysis. In recent decades, SVM demonstrated high prediction accuracy in a wide range of 

regression problems in fields such as oceanography, meteorology, and atmospheric sciences (Lins et al., 2013; Sachindra et 

al., 2018; Shabani et al., 2020; Shrestha and Shukla, 2015; Fan et al., 2018). The SVM model estimates the regression using 320 

a series of kernel functions that are capable of implicitly converting the original, lower-dimensional input data to a higher-

dimensional feature space. To achieve the best prediction accuracy for MSA and SO4, we assessed the SVM different kernel 

functions such as linear, polynomial (quadratic and cubic) and Gaussian (Table S1 and S2). The Gaussian kernel was 
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adopted by trying various kernel scales, setting them to 0.61 (fine), 2.4 (medium), and 9.8 (coarse). For more information on 

SVM, the reader is referred to https://www.mathworks.com/help/stats/fitrsvm.html. 325 

3.2.2 Regression ensemble (RE) 

The ensemble is a technique that employs a collection of models (referred to as weak learners or base models), each of which 

is produced by applying a learning process to a specific problem and then combining them to provide the final prediction 

(Mendes-Moreira et al., 2012). The performance and accuracy of ensembles are determined by the aggregation of weak 

learners (Hengl et al., 2018). The well-known types of aggregation are the bagging and boosting methods (Breiman, 2001). 330 

In the bagging method (also known as bootstrap aggregating), the base models are generated using random sub-samples 

drawn from the original dataset with the bootstrap sampling method, where some original examples appear several times 

while others do not appear at all. On the other hand, the main idea of the boosting method is that it is possible to convert a 

base model that performs slightly better into one that arbitrarily achieves high accuracy. This conversion is performed by 

combining the estimations of several predictors. For more information on RE, the reader is referred to 335 

https://www.mathworks.com/help/stats/fitrensemble.html.  

3.2.3 Gaussian process regression (GPR) 

GPR is a non-parametric technique for solving nonlinear regression problems (Williams and Rasmussen, 1996) which is 

based on Bayesian theory and statistical learning theory. The accuracy of GPR is dependent on the adopted kernel 

(covariance) functions (Verrelst et al., 2016). We assessed the different base kernel functions, namely exponential, Matern 340 

5/2, squared exponential, and rational quadratic (Asante-Okyere et al., 2018; Mansour et al., 2023a) to determine the optimal 

covariance function that could produce reliable predictions of MSA and SO4. For more information on GPR, the reader is 

referred to Mansour et al. (2023a) and https://www.mathworks.com/help/stats/fitrgp.html. 

3.2.4 Artificial neural networks (ANN) 

ANN is an information processing system, which can be used to understand the complex nonlinear relationship between the 345 

response and predictors (Kalogirou, 2001). It consists of interconnected groups of artificial neurons that work in the same 

way as biological neurons. The ANN structure comprises three distinctive groups called input (corresponds to the 

predictors), several hidden layers (fully connected), and output (corresponds to the predicted response values). The input 

introduces data to the ANN model, the hidden layer processes the data, and the results are produced in the output. Further 

details on ANN can be found at https://www.mathworks.com/help/stats/fitrnet.html. We trained various types of ANN as 350 

single-layer (number of fully connected layers = 1), bi-layered (number of fully connected layers = 2), and tri-layered 

(number of fully connected layers = 3) neural networks as detailed in Tables S1 and S2. 
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3.3 Evaluation measures 

In this study, we use different validation metrics to evaluate the ML models' performance. Each of the metrics is calculated 

using “residuals”. Residuals are the differences between the observed data points 𝑂𝑖  and the predicted values 𝑃𝑖 , where 𝑖 =355 

1,2, … 𝑛. 𝑛 refers to the number of observations. Better models in predicting the response have residuals close to zero. The 

average magnitude of the residuals is called mean absolute error (MAE). 

 𝑀𝐴𝐸 =
1

𝑛
∑ |𝑂𝑖 − 𝑃𝑖|𝑛

𝑖=1    (3) 

Regression models tend to use the square of the residuals instead of the absolute. The square root of the average of the 

squared residuals is called root mean square errors (RMSE). A low RMSE is a confidence that your model has relatively few 360 

large errors. 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑃𝑖 − 𝑂𝑖)

2𝑛
𝑖   (4) 

The metrics listed in Eqn. 3 and Eqn. 4 can only tell you how a model compares to observations and/or other models. Neither 

can say whether a model is a good fit for the data objectively. Comparing a model to a simple baseline model is a different 

approach. This is the motivation behind the use of the coefficient of determination (𝑅2) metric (Eqn. 5). 𝑅2 is the relative 365 

difference in the total error obtained by fitting a model, so a value between 0 and 1. If a model fits the data well, the model 

error is small and 𝑅2 will be close to 1 and vice versa. 

 𝑅2 = 1 −
∑ (𝑂𝑖−𝑃𝑖)2𝑛

𝑖

∑ (𝑂𝑖−𝑂𝑖̅̅ ̅)2𝑛
𝑖

 (5) 

Where 𝑂𝑖̅ is the average of observations. 

4. Results and Discussion 370 

4.1 Evaluation of ML model performance 

As a first step, we assessed different possible hyperparameters optimization in each type of the four used ML models (SVM, 

RE, GPR, and ANN) to determine which one has the best fit and lesser errors in sulfur aerosol (MSA and SO4) predictability. 

We chose the best model with the least errors in each type for further evaluation and analysis based on the evaluation 

measures (RMSE, MAE, and R2). The evaluation measures are summarized in Table S1 for MSA and Table S2 for SO4. The 375 

medium Gaussian SVM which utilizes a Gaussian kernel scale equal to the square root of the number of predictors (= 2.4), 

displayed better performance. The ensemble bagged trees (EBT) of a bootstrap aggregated ensemble and the GPR, which 

employs the rational quadratic kernel, represent the minimum errors. Finally, a medium ANN of layer size 25 with one fully 
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connected layer is selected. The four best-performing (optimal) models have been exported and saved so that they can be 

used to make new predictions on a new dataset. 380 

Fig. 3a-d and Fig.4a-d present the detailed comparison between observed and predicted MSA and SO4, respectively, of the 

four developed ML optimal models. When compared to the multilinear regression (Table 3), it is clear that ML models, in 

general, can reconstruct the observations with a markedly higher R2 value, which means that the selected ML approaches 

capture much more of the observed MSA and SO4 variability. While the four applied optimal algorithms have quasi-similar 

measures, the best model is GPR for predicting MSA and SO4. For hourly MSA (SO4), the GPR achieves the highest R2 385 

value of 0.79 (0.64) and the least RMSE of 0.362 (0.282) for the cross-validated data (average measures of each validation 

fold). When extending to the test data, R2 and RMSE reach 0.81 (0.67) and 0.347 (0.272), respectively. The EBT comes 

second in terms of performance in predicting MSA (SO4) with R2 = 0.80 (0.64) of the independent test data. The SVM and 

ANN achieve a reasonable accuracy with R2 = 0.79 (0.61) and 0.78 (0.60), respectively for MSA (SO4) based on the test 

data.  390 

Importantly, the implemented ML models can reconstruct MSA and SO4 daily time series characteristics with remarkable 

consistency between observed and predicted data. It is worth noting that the daily averages of MSA and SO4 have been 

calculated from the validation folds and the test set. The MAE of GPR is close to 0.014 (0.100) µg m–3 for MSA (SO4). The 

MAE of EBT, SVM and ANN are higher than those of both GPR. According to the R2, the ranking order is the same as for 

MAE, i.e., GPR outperforms EBT, SVM and ANN in both MSA and SO4, notwithstanding the differences in the R2 of the 395 

four models are small. An in-depth look at the MAE and R2 from MHD and NAAMES (Fig. 4; right panels) demonstrates 

that the ML models perform well in predicting SO4 across different datasets. All four models show relatively high values of 

R2 on the NAAMES dataset. EBT, SVM and ANN have R2 values that are similar and equal to 0.81, whilst GPR has a higher 

value of R2 reaching 0.87. In essence, the performance metrics indicate that GPR always has the highest accuracy and lowest 

errors, reflecting the robustness of GPR. Therefore, GPR was selected as the optimal regressor for further analysis 400 

throughout this study. 
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 405 

 

 

Figure 3: Comparison of predicted and observed MSA on the hourly (left panels) and daily (right panels) scales: (a) GPR, (b) EBT, 

(c) SVM, and (d) ANN. The validation and test data subsets are used to compute the model's performance. R2 and RMSE are 

computed in a logarithmic space, whereas MAE is computed on a normal scale. 410 
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Figure 4: Comparison of predicted and observed SO4 on the hourly (left panels) and daily (right panels) scales: (a) GPR, (b) EBT, 415 
(c) SVM, and (d) ANN. The validation and test data subsets are used to compute the model's performance. R2 and RMSE are 

computed in a logarithmic space, whereas MAE is computed on a normal scale.  
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4.2 Partial dependence analysis 

The bulk of ML models is called a "black box" since the internal computations inside multiple operational layers in a model 

are concealed and most systems have only observable inputs and outputs out of the box. The partial dependence analysis 420 

(Friedman, 2001) is used to assess how predictors influence an output by ML model and show whether the relationship 

between the response and any of the features is linear, monotonic or more complex. The method entails altering one feature 

and constraining the remaining features to unaltered average values to illustrate the marginal effect of the changed feature on 

the expected outcome. The partial dependence plots of MSA and SO4 as a function of the predictors in the highest-

performing GPR model are shown in Fig. 5, indicating that the interactions between predictors and response are complex in 425 

general. MSA and SO4 levels tend to rise as FDMS levels rise from 3 to 10 µmol m–2 d–1. MSA continues to rise with stronger 

FDMS emission rates (>10 µmol m–2 d–1), nevertheless, SO4 concentration appears independent of FDMS after this threshold. 

AT exhibits a positive relationship with MSA and SO4 concentration in the range of (5–10 °C) and above a downward trend. 

RH, which has the least impact on MSA and SO4 (Table 3), has an unclear pattern on the MSA and SO4 marginal changes. 

MSA and SO4 present a negative dependence on PR as rain is expected to scavenge aerosol particles; nevertheless, at higher 430 

levels of PR, SO4 concentrations tend to increase. This may be partly linked to enhanced cloudiness, associated to high PR, 

where the aqueous phase formation of SO4 in the MBL may be favored (Zhu et al., 2006; Von Glasow and Crutzen, 2004). 

This is also in agreement with the enhancement of SO4 concentration at high RH. Finally, BLH and SRF are the most 

straightforward influencing parameters on MSA and SO4 levels, with deep BLH resulting in a dilution of their concentrations 

and high SRF leading to high MSA and SO4 levels, as expected for DMS photo‐oxidation products. 435 

4.3 The IPB-MSA&SO4 dataset 

The GPR model was used to generate the long-term gridded fields of high-resolution (0.25° × 0.25°) MSA and SO4 

concentrations. At each pixel, a daily time series of MSA and SO4 have been generated spanning from 1998 to 2022 (9131 

days). The total number of pixels in the entire NA domain is 43840, for a total of 400’303’040 data points. The daily time 

series of MSA and SO4 averaged over the entire NA domain are presented in Fig. S8. The dataset represents the sea-level 440 

concentrations of MSA and SO4 associated with in-situ production in the MBL derived based on the six selected predictors, 

which in turn represent the sea-to-air flux of DMS (the precursor) and the meteorological conditions that can mostly affect, 

in one direction or in the other, the formation of the two products. For this reason, we consider the data to be representative 

of the concentration of sulfur aerosol species resulting, in each pixel, from the local biogenic emissions in combination with 

local atmospheric conditions. As such, we called the achieved data product the In-situ Produced Biogenic MSA and SO4 445 

(IPB-MSA&SO4) dataset across the NA. It is important to note that atmospheric motion is not considered in our product and 

that the maps resulting from the data represent a static picture of potential sea-level concentrations of MSA and SO4, in a 

certain pixel and at a certain time as a result only of the interplay between local DMS emissions, photochemistry and 

dilution/removal processes, and that provide accurate predictions of the actual sea level concentrations of MSA and SO4 
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once averaged over 2-to-3-days transport tracts. Accordingly, the IPB-MSA&SO4 data presented hereafter are different from 450 

the output of a chemical transport model. Nevertheless, we believe that this unprecedented dataset may be useful for many 

research purposes, for instance, investigating long-term trends, or addressing the interannual or spatial variability in the 

production of biogenic sulfur aerosol species. Examples of the scientific information that can be extracted from the data and 

on how they can be compared to model output or in-situ observations are provided in the next Sections. 

 455 

 

Figure 5: Partial dependence plots of MSA and SO4 as a function of the predictors revealed by the GPR model. 
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4.4 Comparison with CAMS Reanalysis 

To further examine the effectiveness of our GPR model, we compared the observed MSA concentrations at MHD with the 

most recently released CAMS-EAC4 (Inness et al., 2019) reanalysis datasets. The EAC4 (ECMWF Atmospheric 460 

Composition Reanalysis 4) is the fourth generation of the ECMWF global reanalysis dataset of atmospheric composition 

from the Copernicus Atmosphere Monitoring Service (CAMS). CAMS-EAC4 is a collection of atmospheric composition 

fields from 2003 to the present, including aerosols and chemical species for which MSA data is available. The spatial 

resolution of the CAMS datasets is about 0.75° × 0.75° and a 3h temporal resolution. Our datasets have a resolution of 0.25° 

× 0.25° and start from 1998. To compare the two products, we extracted MSA data from CAMS locally, at the grid cell in 465 

front of the MHD station, corresponding to maritime BT timings, and averaged them to daily resolution. Conservatively, the 

MSA concentration data simulated by GPR were taken from the validation and test sets, which were not included in the 

model training. Such MSA concentrations at MHD were projected by incorporating predictors along the BTs into 

consideration to account for the air motion (see Section 3.1.2 for details). 

Scatter plots and joint probability histograms of residual errors (Fig. 6) were constructed to compare the accuracy between 470 

GPR, CAMS and observations (referred to as OBS). It can be seen from the scatter plots (Fig. 6a and Fig. 6b) that the GPR-

simulated MSA best matches the observations, with a 1.03 fitted slope, 0.93 correlation coefficient and most of the data 

points comprised within the 95% confidence bounds. The joint probability histograms between observed MSA and the 

residuals (OBS – GPR) and (OBS – CAMS) are used to verify the variance of residual errors around zero. The GPR 

histograms (Fig. 6c and Fig. 6e) show that the residual errors are mostly centered around zero (dashed black line in the right) 475 

up to the value of 0.1 µg m–3 where the majority of data points lie, while CAMS are skewed toward negative residuals 

followed by positive residuals mainly at high MSA values (Fig. 6d and Fig. 6f). Quantitively, the GPR has relative MAE 

equal to 4.3% in comparison to 6.3% for CAMS. In summary, GPR better captures the low concentrations of MSA, which 

CAMS tends to overestimate, while both CAMS and GPR show limitations in retrieving the extreme points of MSA 

concentrations. A quantitative statistical analysis (Fig. 6g) showed that no statistically significant (p<0.05) difference exists 480 

between the seasonal median MSA from OBS and GPR, while CAMS presents a significant (p<0.05) difference in all 

seasons except summer. Nevertheless, the two datasets (GPR and CAMS) properly retrieve the observed MSA seasonal 

cycle. 
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 485 

Figure 6: Comparison between observed MSA at MHD measuring site and both MSA predicted by GPR (a) and MSA extracted 

from CAMS reanalysis (b). (c) and (d): joint probability histograms between observed MSA and residual errors (observed–

predicted); the black dashed lines represent the change of MSA residual errors in each bin. MAE is the mean absolute error, and 

the relative MAE has been calculated as the MAE divided by the range of observed MSA. (e) and (f): frequency distributions of 

the residual errors. (g): Seasonal box charts from different datasets. Each box chart displays the median (line inside of each box), 490 
the 1st and 3rd quartiles (bottom and top edges of each box), the minimum and maximum values that are not outliers (whiskers), 

and any outliers represented by '+' (computed as values that are more than 1.5 of the interquartile range away from the top or 

bottom of the box). Box charts whose notches (the shaded region around each median) do not overlap have different medians at 

the 95% confidence level. 
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4.5 Comparison with the Polarstern cruise results 495 

In this Section, we present a case study exemplifying how the IPB-MSA&SO4 datasets can be used. Because the data 

product represents the concentration of freshly formed sulfur aerosol species and the ML model does not account for 

atmospheric transport, users must interpret the datasets considering the air mass history. To better clarify the idea, we 

employed the independent MSA data measured during the Polarstern campaigns in the NA (Huang et al., 2017), which were 

not used in the training/validation or testing/evaluation of the ML models, and compared them with predicted MSA by GPR. 500 

In particular, the MSA by GPR was extracted along air mass BTs arriving at the hourly sites of the ship tracks and then 

averaged considering a 0-day (simultaneously), 1-day, 2-day and 3-day air mass history. The MSA measurements on 

Polarstern were performed in four scientific cruises including two spring seasons (April-May 2011 & April-May 2012) and 

two autumn seasons (October-November 2011 & October-November 2012). The ship tracks of the cruises from which the 

data were taken in the present study are shown in Fig. 7. It can be seen that the best match between GPR-simulated MSA and 505 

observed MSA occurred when 2-day air masses were considered. At 2-day air mass history, the slope reached 0.84 and the 

correlation coefficient 0.81 (Fig. 7a-d). Again, as seen in Fig. 7f, GPR MSA is considerably more consistent with 

observations than CAMS, for which a significant difference with observations (p < 0.05) can be appreciated.  
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 510 

Figure 7: (a) Scatter plots between observed MSA during the Polarstern campaigns (Huang et al., 2017) and predicted MSA by 

GPR, considering (a) 0-day, (b) 1-day, (c) 2-day and (d) 3-day air mass history. (f): Seasonal box charts from different datasets. 

The features displayed on each box chart are the same as those given in Fig. 6. 
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4.6 Monthly MSA and SO4 distributions 515 

In order to elucidate the geographical distributions of biogenic sulfur aerosol production across the NA domain, the IPB-

MSA&SO4 datasets in the 25 years (1998–2022) were averaged to obtain the climatic monthly distributions of MSA and SO4 

illustrated in Fig. 8a and Fig. 8b, respectively. The monthly climatological maps reveal that MSA and SO4 display a gradual 

increase in their concentrations southward, clearly evident from October to March, resulting in a large difference between the 

northern and southern parts of the domain. In contrary, during summer, the concentrations are more homogeneous over the 520 

domain (see latitudinal patterns in Fig. 9), still with a tendency to higher concentrations over the northeastern part. The 

seasonality of MSA and SO4 is evident: the increase for both compounds starts in April and peaks in June-July followed by a 

gradual decrease in September (Fig. S8). The lowest MSA (SO4) concentration occurs in December at 0.006 ± 0.005 (0.155 

± 0.079) and the highest occurs in June at 0.029 ± 0.013 (0.364 ± 0.075) µg m−3 (Fig. 8a and Fig. 8b), consistent with the fact 

that winter and summer are typically the lowest and highest seasons for biological activity, respectively for the NA (Mansour 525 

et al., 2023a).  

The ratio of MSA to SO4 (MSA:SO4) also exhibits a seasonal pattern, with the lowest (highest) values observed during the 

winter (summer), as presented in Fig. 8c. July has the highest spatial average of the ratio of 0.077 ± 0.022 while the lowest of 

0.032 ± 0.012 occurs in December. Looking at the overall distributions, MSA:SO4 demonstrates a general southern increase, 

with the exception of summer months. In summer (mainly July and August), MSA:SO4 above 50°N has an opposite trend 530 

with respect to the one below 50°N. In detail, from North to South, we report a sharp increase in MSA:SO4, maximized 

around 50°N, followed by an abrupt decrease toward the equator. The possible explanation for the decline in MSA:SO4 

below 50°N is that the reduction in MSA:SO4 correlates to an increase in AT caused by warmer air nearing the equator, in 

line with observations in the Pacific Ocean (Bates et al., 1992) and with the higher ratio observed in colder air masses 

(marine Polar and Arctic) with respect to warmer ones (marine Tropical) at MHD (Ovadnevaite et al., 2014). As a final 535 

remark, we report that the summertime low MSA:SO4 below 50°N is linked to a decrease in FDMS in the same latitudinal 

zone (Mansour et al., 2023a). Owing to the low DMS emissions, the different DMS oxidation patterns may be in competition 

(Barone et al., 1995); since MSA is formed preferentially through the pathway of OH addition at low temperatures (Shen et 

al., 2022), the production of MSA may be decreased relative to that of SO4 in the warm southern part of the domain, during 

summer, leading to the observed decrease in the MSA:SO4 ratio. 540 
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Figure 8: Monthly spatial distributions of (a) MSA (µg m–3), (b) SO4 (µg m–3), and (c) MSA:SO4 based on GPR over 1998–2022 at 

0.25° × 0.25° resolution. The monthly (average ± spatial standard deviation) are shown in brackets above each panel.  545 
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Figure 9: Monthly latitudinal distributions of MSA, SO4, and the MSA:SO4 based on GPR over 1998–2022. Shaded areas 

represent ± standard deviations. 

 

5. Data availability 550 

The dataset includes daily MSA and SO4 concentrations at 0.25° × 0.25° spatial resolution over the North Atlantic Ocean 

from January 1998 to December 2022. The datasets are publicly available in NetCDF format as daily files on the Mendeley 

online repository at https://doi.org/10.17632/j8bzd5dvpx.1 (Mansour et al., 2023b). 
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6. Conclusions 

Marine aerosol data can be obtained from in-situ coastal observatories or from shipborne measurements, however, punctual 555 

coast observations are limited under the point of view of the spatial representativity, while shipborne measurements suffer of 

limitations in terms of temporal coverage. Understanding the dynamics of marine-derived biogenic sulfur aerosols and their 

radiative effects, as well as carrying out relevant scientific studies, requires long-term, continuous and high-resolution (space 

and time-wise) datasets. To overcome the limitations of punctual measurements, we combined the in-situ observations of 

sulfur aerosol data at Mace Head and from NAAMES cruises, as dependent variables, and the sea-to-air DMS flux and 560 

ECMWF-ERA5 reanalysis meteorological datasets, as independent variables, to investigate the potential of machine learning 

techniques for the prediction of daily MSA and SO4 sea-level concentrations over the North Atlantic Ocean. We evaluated 

four machine learning models (i.e., SVM, RE, GPR, and ANN), considering various sets of hyperparameter optimizations. 

Our findings demonstrated that the GPR model outperforms other approaches in simulating the concentrations of biogenic 

sulfur aerosols, capturing up to 86% and 72% of the observed variance in daily MSA and SO4, respectively. This makes the 565 

GPR an effective tool for obtaining trustworthy sea-level MSA and SO4 concentrations over the North Atlantic, which may 

also be successful in other oceanic regions or over the entire global ocean. The impact of the six independent predictors on 

the simulated MSA and SO4 is further evaluated using the GPR partial dependence analysis, which reveals that the 

relationships between them are multifaceted rather than linear or monotonically varying. 

By the GPR machine learning method, we constructed a novel 0.25°×0.25° resolution daily gridded dataset of in-situ 570 

produced biogenic MSA and SO4 concentrations (named IPB-MSA&SO4) covering the North Atlantic Ocean from 1998 to 

2022. The dataset represents the sea-level concentrations of MSA and SO4 associated with in-situ production in the MBL, 

i.e., the concentration of sulfur aerosol species resulting, in each pixel, from the local biogenic emissions in combination 

with local atmospheric conditions. Other inputs, such as terrestrial emissions or sinking of sulfur species produced in the free 

troposphere are not accounted for in the present dataset. 575 

Comparison of the GPR-derived MSA with existing CAMS-EAC4 reanalysis product reveals that our high-resolution dataset 

accurately reproduces the spatial and temporal patterns of the biogenic sulfur aerosol concentration and has high consistency 

with the independent observations of the Polarstern cruises measurements in the Atlantic. The obtained IPB-MSA&SO4 data 

were used to analyze the spatiotemporal variations of MSA, SO4, and the ratio between them (MSA:SO4). It was found that 

the monthly concentrations of MSA and SO4 across the NA are characterized by a significant southward increase in each 580 

month, with the exception of summertime when MSA and SO4 displayed more homogeneous spatial patterns with a 

tendency to higher concentrations over the northeastern part of the domain. The MSA:SO4 exhibits a seasonal variation from 

winter (low) to summer (high) characterized by a sharp decline from the 50 °N parallel toward the equator mainly in July-

August. More profound analyses can be conducted based on the biogenic sulfur aerosol concentration datasets, which could 

help further understanding of oceanic sulfur-aerosol-cloud interactions. 585 
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